51		_					
Reg. No.:							

Question Paper Code: 20923

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2023.

Third Semester

Electrical and Electronics Engineering

EC 3301 – ELECTRON DEVICES AND CIRCUITS

(Regulations 2021)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. Define the term transition capacitance C_T and diffusion capacitance C_D of a diode.
- 2. Calculate the space charge width in a silicon PN junction at $T=300\,K$ with doping concentrations of $N_a=10^{16}~\rm cm^{-3}$ and $N_d=10^{15}~\rm cm^{-3}$. Given $V_{bi}=0.635\,V$, $\varepsilon\,si=11.7$.
- 3. What is early effect? Mention its consequences.
- 4. In a CB transistor circuit, the emitter current $I_e = 6 \, mA$ and the collector current $Ic = 5.5 m \, A$. Determine the CB dc current gain.
- 5. A CE amplifier has the h parameters given by $h_{ie} = 1050\,\Omega$, $hre = 2.5 \times 10^{-4}$, $h_{fe} = 50$ and $h_{oe} = 25\,\mu mho$. If both the load and source resistance are $1K\Omega$, find the current gain.
- 6. Mention the non ideal effects of BJT.
- 7. Sketch the circuit diagram of BiMOS cacode amplifier.
- 8. What is neutralization? How can it be achieved?
- 9. Mention the advantages of negative feedback.
- 10. What are the conditions for oscillation?

PART B — $(5 \times 13 = 65 \text{ marks})$

11.	(a)	(i)	What is barrier potential and explain how it is developed at the PN junction? (6)							
		(ii)	Explain the V-I characteristics of a PN diode.	(7)						
			Or							
	(b)	(i)	With neat diagram explain a full wave rectifier circuit.	(6)						
		(ii)	Explain about the series and shunt clipping circuit.	(7)						
12.	(a)	Expl enha	lain the construction, operation and V-I characteristics ancement and depletion MoSFET.	of						
			Or							
	(b)		n neat diagram explain the operation and V-I characteristics of Uthyristors.	JJT						
13.	(a)	deriv	w the equivalent circuit of a CE amplifier using hybrid TT model we the expression for input impedance, output impedance, volt and current gain.							
			Or							
	(b)	comi	ain the circuit diagram and relevant characteristics of MOSF mon source amplifier and hence derive the expression for volt, input impedance and output impedance.							
14.	(a)	(i)	Draw the circuit diagram of BJT differential amplifier and expl the operation.	lain (8)						
		(ii)	Derive the expression for voltage gain input and output impedar for differential amplifier.	nces (5)						
			m Or							
	(b)		ain the operation of series fed class A power amplifier. Derive ession for its maximum efficiency.	the						
15.	(a)	expr	n neat diagram explain voltage shunt feedback amplifier. Derive ession for transresistance gain, i/p resistance, o/p resistance and age gain.							

Or

- (b) (i) Draw the circuit diagram of Wien-bridge oscillator and briefly explain its working principle and also derive the expression for its gain. (8)
 - (ii) Design a Wien-bridge oscillator, that oscillates at 25 kHz. (5)

PART C —
$$(1 \times 15 = 15 \text{ marks})$$

- 16. (a) (i) Explain the operation and V-I characteristics of Zener diode. (9)
 - (ii) From the circuit shown in Fig. 16 (a) (ii), Vs vary between 20 V to 30 V. Find
 - (1) The minimum and maximum currents in the Zener diode.
 - (2) The minimum and maximum power dissipated in the diode.(6)

- (b) (i) Draw the circuit of a Colpits oscillator and explains its working principle. (9)
 - (ii) An amplifier has a midband gain of 125 and bandwidth of 250 kHz. If 5% of negative feedback is introduced, find the new bandwidth and gain. (6)